Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; 37(3): e14047, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661070

RESUMEN

Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs' specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.


La conectividad entre hábitats es un objetivo fundamental de las políticas de conservación actuales y con frecuencia se modela con grafos de paisaje (conjuntos de teselas de hábitat [nodos] conectados por vías potenciales de dispersión [enlaces]). Estos grafos se construyen a menudo con opiniones de expertos y modelos de distribución de especies (MDE), por lo que carecen de la validación empírica a partir de datos que reflejan de mejor manera la conectividad funcional. Por consiguiente, analizamos si los grafos de paisaje reflejan cómo la conectividad de hábitats influye sobre el flujo genético, que es uno de los principales procesos evolutivos. Con este propósito, modelamos la red de hábitats de un ave forestal (Setophaga plumbea) en Guadalupe con grafos basados en la opinión de un experto, en el índice de especialización de Jacobs o en un MDE. Usamos datos genéticos (712 aves de 27 poblaciones) para computar los índices genéticos locales y las distancias genéticas entre pares de poblaciones. Por último, analizamos las relaciones entre los índices o distancias genéticas y las distancias de costo o las métricas de conectividad con modelos de distancias de tipo maximum-likelihood-population-effect y correlaciones de Spearman entre las métricas e índices. En general, los grafos de paisaje reflejaron de manera confiable la influencia de la conectividad sobre la estructura genética de las poblaciones; el R2 de validación llegó hasta 0.30 y los coeficientes de correlación llegaron hasta 0.71. Aun así, la relación entre la pertinencia ecológica de los grafos, los requerimientos de datos y los métodos de construcción y análisis no fue directa porque los grafos basados en el método de construcción el más complejo (modelado a partir de la distribución de la especie) a veces tuvieron menos pertinencia ecológica que los otros. Los métodos de validación cruzada y los análisis de sensibilidad nos permitieron hacer espacialmente explícitas las ventajas y limitaciones de cada método de construcción. Así, confirmamos la pertinencia que tienen los grafos de paisaje para la conservación, aunque recomendamos se considere caso por caso el ratio entre la complejidad y la calidad de los métodos de construcción. Esperamos que la replicación de estrategias de validación independiente por varios paisajes y especies fortalezcan la pertinencia ecológica de los modelos de conectividad.


Asunto(s)
Conservación de los Recursos Naturales , Passeriformes , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques , Passeriformes/genética , Flujo Génico
2.
Mol Ecol ; 32(4): 951-969, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461661

RESUMEN

While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.


Asunto(s)
Ecosistema , Interacciones Huésped-Parásitos , Animales , Bosques , Biodiversidad , Aves/parasitología
3.
Heredity (Edinb) ; 126(1): 148-162, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32934360

RESUMEN

Habitat fragmentation is a major cause of biodiversity loss, responsible for an alteration of intraspecific patterns of neutral genetic diversity and structure. Although neutral genetic variation can be informative for demographic inferences, it may be a poor predictor of adaptive genetic diversity and thus of the consequences of habitat fragmentation on selective evolutionary processes. In this context, we contrasted patterns of genetic diversity and structure of neutral loci (microsatellites) and immune genes (i.e., toll-like receptors) in an understorey bird species, the wedge-billed woodcreeper Glyphorynchus spirurus. The objectives were (1) to investigate forest fragmentation effects on population genetic diversity, (2) to disentangle the relative role of demography (genetic drift and migration) and selection, and (3) to assess whether immunogenetic patterns could be associated with variation of ectoparasite (i.e., ticks) pressures. Our results revealed an erosion of neutral genetic diversity and a substantial genetic differentiation among fragmented populations, resulting from a decrease in landscape connectivity and leading to the divergence of distinct genetic pools at a small spatial scale. Patterns of genetic diversity observed for TLR4 and TLR5 were concordant with neutral genetic patterns, whereas those observed for TLR3 and TLR21 were discordant. This result underlines that the dominant evolutionary force shaping immunogenetic diversity (genetic drift vs. selection) may be different depending on loci considered. Finally, tick prevalence was higher in fragmented environments. We discussed the hypothesis that pathogen selective pressures may contribute to maintain adaptive genetic diversity despite the negative demographic effect of habitat fragmentation on neutral genetic diversity.


Asunto(s)
Aves , Ecosistema , Animales , Aves/genética
4.
Mol Ecol ; 26(19): 4906-4919, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28727200

RESUMEN

Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces.


Asunto(s)
Bosques , Flujo Génico , Genética de Población , Passeriformes/genética , Animales , Guadalupe , Modelos Genéticos
5.
Mol Ecol Resour ; 17(5): 893-903, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27978606

RESUMEN

Microsatellites, also called simple sequence repeats (SSRs), are markers of choice to estimate relevant parameters for conservation genetics, such as migration rates, effective population size and kinship. Cross-amplification of SSRs is the simplest way to obtain sets of markers, and highly conserved SSRs have recently been developed from expressed sequence tags (EST) to improve SSR cross-species utility. As EST-SSRs are located in coding regions, the higher stability of their flanking regions reduces the frequency of null alleles and improves cross-species amplification. However, EST-SSRs have generally less allelic variability than genomic SSRs, potentially leading to differences in estimates of population genetic parameters such as genetic differentiation. To assess the potential of EST-SSRs in studies of within-species genetic diversity, we compared the relative performance of EST- and genomic SSRs following a multispecies approach on passerine birds. We tested whether patterns and levels of genetic diversity within and between populations assessed from EST- and from genomic SSRs are congruent, and we investigated how the relative efficiency of EST- and genomic SSRs is influenced by levels of differentiation. EST- and genomic SSRs ensured comparable inferences of population genetic structure in cases of strong genetic differentiation, and genomic SSRs performed slightly better than EST-SSRs when differentiation is moderate. However and interestingly, EST-SSRs had a higher power to detect weak genetic structure compared to genomic SSRs. Our study attests that EST-SSRs may be valuable molecular markers for conservation genetic studies in taxa such as birds, where the development of genomic SSRs is impeded by their low frequency.


Asunto(s)
Aves/clasificación , Aves/genética , Etiquetas de Secuencia Expresada , Variación Genética , Genética de Población/métodos , Técnicas de Genotipaje/métodos , Repeticiones de Microsatélite , Animales
6.
Sci Rep ; 6: 27282, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255732

RESUMEN

Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Insectos/fisiología , Plantas/genética , Polen/genética , Animales , ADN de Plantas/genética , Fenómenos Fisiológicos de las Plantas , Polinización , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Mol Ecol ; 25(16): 3831-44, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27314987

RESUMEN

Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species-specific population structure are rare. Here, we used a comparative approach on eight bird species, co-occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology.


Asunto(s)
Aves/genética , Ecosistema , Evolución Molecular , Clima Tropical , Animales , Biodiversidad , Bosques , Genética de Población , Guadalupe
8.
Genetica ; 144(1): 125-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26797853

RESUMEN

Archipelagoes are considered as "natural laboratories" for studying processes that shape the distribution of diversity. The Lesser Antilles provide a favorable geographical context for divergence to occur. However, although morphological subspecies have been described across this archipelago in numerous avian species, the potential for the Lesser Antilles in driving intra-specific genetic divergence in highly mobile organisms such as birds remains understudied. Here, we assessed level of intra-specific genetic diversity and differentiation between three islands of the Lesser Antilles (Guadeloupe, Dominica and Martinique) using a multi-species approach on eight bird species. For each species, we built a set of microsatellite markers from cross-species amplifications. Significant patterns of inter-island and/or within-island genetic differentiation were detected in all species. However, levels of intra-specific genetic differentiation among the eight bird species were not always consistent with the boundaries of subspecies previously described in the sampled islands. These results suggest different histories of colonization/expansion and/or different species-specific ecological traits affecting gene flow, advocating for multi-species studies of historical and contemporary factors shaping the distribution of diversity on islands.


Asunto(s)
Aves/genética , Especiación Genética , Variación Genética , Animales , Aves/clasificación , Dominica , Sitios Genéticos , Genética de Población , Guadalupe , Islas , Martinica , Repeticiones de Microsatélite , Especificidad de la Especie
9.
Ecol Evol ; 6(20): 7511-7521, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725417

RESUMEN

The loss of regulating agents such as parasites is among the most important changes in biotic interactions experienced by populations established in newly colonized areas. Under a relaxed parasite pressure, individuals investing less in costly immune mechanisms might experience a selective advantage and become successful colonizers as they re-allocate resources to other fitness-related traits. Accordingly, a refinement of the evolution of increased competitive ability (EICA) hypothesis proposed that immunity of invasive populations has evolved toward a reduced investment in innate immunity, the most costly component of immunity, and an increased humoral immunity that is less costly. Biogeographical approaches comparing populations between native and expansion ranges are particularly relevant in exploring this issue, but remain very scarce. We conducted a biogeographical comparison between populations of Spectacled Thrush (Turdus nudigenis) from the native area (South America) and from the expansion range (Caribbean islands). First, we compared haemosporidian prevalence and circulating haptoglobin (an acute-phase protein produced during inflammation). Second, we challenged captive birds from both ranges with Escherichia coli lipopolysaccharides (LPS) and measured postchallenge haptoglobin production and body mass change. Birds from the expansion range showed lower haemosporidian prevalence and lower levels of haptoglobin than birds from the native range. In addition, the inflammation elicited by LPS injection and its associated cost in terms of body mass loss were lower in birds from the expansion range than in birds from the native range. In accordance with the enemy release hypothesis, our results suggest that range expansion is associated with a reduced infection risk. Our study also supports the hypothesis that individuals from newly established populations have evolved mechanisms to dampen the inflammatory response and are in accordance with one prediction of the refined EICA hypothesis, proposed to understand biological invasions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...